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Abstract: An analysis is presented that shows how floating spherical Gaussian orbital (FSGO) basis sets can be related to 
atomic Gaussian orbital basis sets. In addition, through the development of the concept of local rotational invariance, it is 
shown how FSGO basis sets can, in a systematic and straightforward manner, be generalized and extended to increase the flex
ibility of the basis. To illustrate the concepts, it is shown how full sets of p- and d-type atomic orbital components can be includ
ed in an FSGO basis using substantially fewer basis functions than needed in traditional lobe-function basis sets. 

I. Introduction 
Ever since the introduction of floating spherical Gaussian 

orbitals (FSGO) as basis functions for ab initio calculations,23 

many generalizations and applications have occurred. For 
example, formulation and characterization of techniques for 
ab initio self-consistent field molecular orbital4 (SCF-MO) 
calculations on large molecular systems using these basis or
bitals have taken place,5-i8 and application to a variety of 
problems of biological and chemical interest has occurred.19-34 

In addition, other formulations and applications in different 
areas have also taken place.35-63 As is clear from an exami
nation of these studies, FSGO basis orbitals have been used 
at both ends of the computational spectrum, i.e., in small basis 
set calculations on large molecules and in high accuracy, large 
basis set calculations on small molecules. As useful and con
venient as such studies have been, the fundamental conceptual 
and computational advantages that are inherent in FSGO's 
as basis functions have not been exploited fully. This has been 
due primarily to the lack of a suitable framework for gener
alization that would allow higher accuracy to be obtained 
through a systematic and nonarbitrary increase in basis set size 
and flexibility without sacrificing the advantageous conceptual 
and computational characteristics of FSGO's. 

For example, when small FSGO basis sets are employed to 
describe large molecules, computational considerations usually 
require the FSGO's to reflect a preconceived notion of the 
hybridization of the various atoms. As a result, changes that 
may alter the assumed hybridizations (e.g., inversion at a nu
cleus) may, in general, not be adequately described. In addi
tion, although s, p, d, f,. . . atomic-orbital (AO) components 
are introduced implicitly when FSGO basis sets are used,16 

the number and flexibility of the various components present 
may not be sufficient to obtain a desired accuracy. 

In the case of the use of FSGO's in large basis set, high ac
curacy calculations (e.g., in the lobe-function approach37-38), 
augmentation of the basis to obtain improved accuracy is 
usually accomplished by adding AO analogues of higher an
gular momentum and/or by adding additional AO analogues 
of the same angular momentum (e.g., as in a double-f basis62). 
In this manner, the natural atomic orbital progression, s, p, d, 
f, . . ., provides one way in which an FSGO basis can be ex
panded to reach, for example, the Hartree-Fock limit. How
ever, in employing this particular method of basis orbital 
generalization, some of the conceptual and computational 
flexibilities of FSGO's are lost. 

In the sections to follow, an analysis is presented that pro
vides a framework for generalizing FSGO basis sets that re

tains the conceptual and computational advantages of FSGO's, 
without imposing the restrictions or limitations just mentioned. 
In particular, it will be shown that, at least in principle, in
creased accuracy can be obtained from FSGO basis sets, using 
a straightforward and nonarbitrary generalization that does 
not require direct mimicking of AO basis sets. The analysis also 
illustrates the relationship between FSGO and atomic 
Gaussian basis sets, and indicates how all atomic spherical 
harmonic components corresponding to a given orbital angular 
momentum can be included in an FSGO basis with a minimum 
number of FSGO. Finally, the order to which local rotational 
invariance of the results is obtained is discussed. Following the 
analysis, several examples are given to illustrate the manner 
in which the analysis may be applied, and how a systematic 
approach to obtaining higher accuracy FSGO basis sets can 
be achieved. 

II. Expansion of FSGO about an Arbitrary Point 
Normalized FSGO's are defined as follows: 

G(r) = ( 2 / ^ 2 ) 3 / 4 exp|-(r - R)2/p2] (1) 

where p is referred to as the "orbital radius" 63 and R = (X, 
Y, Z) describes the position of the FSGO relative to an arbi
trary fixed origin. The above relationships are illustrated in 
Figure 1. Hence, the size and location of an FSGO is repre
sented by four nonlinear adjustable parameters (p, X, Y, Z), 
which can be determined through energy minimization pro
cedures, by ad hoc procedures based on "chemical reasoning", 
or by some combination of the two. The FSGO's so determined 
can then be used as basis functions in standard ab initio 
SCF-MO calculations. 

However, since FSGO's are spherically symmetric about 
their local origin and are not necessarily confined to lie on 
atomic centers, comparison of results of SCF-MO calculations 
using FSGO basis functions with calculations carried out using 
atom-centered Gaussian-type orbital (GTO) basis functions64 

is more difficult. In order to analyze the relationship between 
FSGO's and atom-centered GTO's, and thus to facilitate 
comparisons between such calculations, it is necessary to ex
amine the expansion of an FSGO about a nearby point, e.g., 
an atomic center. As will be shown in the next section, such an 
expansion also provides the necessary framework for analyzing 
the local rotational invariance of various FSGO arrangements 
about an atomic center. 

In order to carry out the analysis, eq 1 is rewritten in the 
following Cartesian form: 

Maggiora, Christoffersen / Generalization and Characteristics of FSGO Basis Sets 



8326 

Jx.y.z) 

\c-a 

1IXYZ) 

Figure 1. Description of an "off-center" FSGO located at a point relative 
to an arbitrary fixed origin as defined in eq 1. The orbital radius, p, is 
represented by circle. 

G(r) = (2/TTP2)3/4 expj-[(x - X)2 + {y - Y)2 

+ {z-Z)2]/p2\ (2) 

= expj-(R/p)2j G0 (/•) exp{(«*x + eYy + tzz)/p\ (3) 

where G°(r) is identical with G(r) except that its origin is at 
the point of expansion and the e's are unitless parameters de
fined by: 

ex = IX/p, iY = lY/p, tz = 2ZIp (4) 

As is clear from eq 3, the first two terms are spherically sym
metric about the chosen origin, and hence any angular de
pendence must come from the third term. By expanding the 
third term in a Taylor series, the angular dependence is seen 
to be: 

exp\(exx + tYy + tZz)/p\ = 1 + UxX + tyy + tzz]/p 
+ UtX1X2 + ty2y2 + (Z2Z2 + 2extrxy 

+ 2extzxz + 2trtzyz]/p2 + V6CeA-3X3 + iY
3yi 

+ «z3z3 + 3txty2xy2 + 3txez
2xz2 + 3tx

2eyx2y 
+ 3ex

2ezx
2z + 3ey2ezy2z + 3eyez

2yz2 

+ 6exeytzxyz]/pi + t?(«4). (5) 

It is of interest for later discussions to note that the order of the 
multinomial terms (i.e., 1, x, y, z, x2, y2, . . . ,yz, . . .) is the 
same as the order of the corresponding e's. The quantity r?(«4) 
is equivalent to the usual remainder term65 and contains all 
terms of order e4 and higher. Such an expansion is uniformly 
convergent65 for all r, but is of particular interest when \er/p\ 
< 1, where \tr/p\ = [ex

2x2 + ey
2y2 + cz

2z2V/2/p- This 
condition is satisfied in the neighborhood of the origin of G(r) 
when the point of expansion lies within the orbital radius, p [cf. 
Figure I]. 

Substitution of eq 5 into eq 3 then yields 

G(r) = expj-C^2 + tv
2 + ez

2)/4}{G'(r) + [«*G*(r) 
+ £KG>'(r) + tzG

z(r)]/2 + [(V3/2)tx
2G*\r) 

+ (V3/2)eY
2Gy\r) + (v^/2)ez

2G*2(r) + txiyG*y(j) 
+ W z C " ( r ) + ^zG>'z(r)]/4 + [(VT5/6)eA-3G*3(r) 

+ (VT5/6)€K
3G^(r) + (VT5/6) «z

3Gz3(r) 
+ (V3/2})txey2G*y2(r) + (V^/2))eA-ez

2G~2(r) 
+ (V2l2)ex

2eyGx2y(r) + (v^ /2 )^ 2 « z G^ 2 ( r ) 
+ (V%/2)eKez

2G^2(r) + (VT/2))«K
2ezG>'2z(r) 

+ txtYtzGxy*(T)\l% + t?(€4)j (6) 

which is an expansion of G(r) in normalized Cartesian GTO's64 

located at the point of expansion, and of the general form 

Gxay^c(r) = Nx"ybzcG°{r) a, b, c = O, 1, 2,. . . 
(7) 

where 

and 

N1 = 

N = NaNbNc 

( 2 / p ) ' [ l X 3 X 5 . . . ( 2 / - l ) ] -
1 

' / 2 / > 1 
J = O 

(8a) 

(8b) 

where / = a, b, or c. The series in eq 6 is also uniformly con
vergent, since it arises simply from multiplication of the orig
inal uniformly convergent exponential series (eq 5) by the 
function G°(r). This uniform convergence, coupled with the 
linear independence of the G basis functions, implies that the 
set \Gx"yhzC\ is complete.66 A similar but less general expansion 
and discussion has been given earlier.16 

III. Local Rotational Invariance of Off-Center Gaussian 
Basis Sets. Theoretical Considerations. 

In developing a suitable framework for the generalization 
and improvement of FSGO basis sets, it is necessary not only 
to be able to relate the FSGO's to atomic GTO's, but also to 
assess the extent to which energy and/or other properties de
pend upon the local orientation chosen for a given set of 
FSGO's with respect to a particular atomic center. To do this, 
the concept of local rotational invariance will be developed. 

In order to quantify this concept, consider the usual sets of 
s-, p-, d-, and f-type AO functions67'68 

(9a) 

(9b) 

(9c) 

(S) 

(Vx. Py, Pz) 

{!in = {&xy. d x z , dyz, dx2_> .2, d 3 z 2 _ , 2 ) 

( fx(5x 2 -3r2) , fy(5y2-3 r2), f z (5z 2 -3r2) , fx-(z2-x2), 

fy(z2-*2), f,-U2->'2)> fvyz) (9d) 

which form bases of dimension n = 1, 3, 5, 7, respectively, for 
the D(0), D (1\ D(2), and D(3) irreducible representations of the 
full (three-dimensional) rotational group (#3). Thus, each set 
spans an invariant subspace of dimension n under the opera
tions of/?3, i.e., the functions in each set transform only among 
themselves69-71 (see also Table I). Stated mathematically, 

!!i« — » * {£}„ (10) 

where {£}„ represents one of the sets of AO functions in eq 9, 
and 31(R-i) represents any symmetry operation of R^. 

Based upon these observations, the degree of local rotational 
invariance of a particular set of atomic-type functions will be 
taken to be equal to the dimension of the invariant subspace 
spanned by the set under the operations of R^.12 Hence, the 
s-, p-, d-, and f-type AO's above are rotationally invariant to 
degree 1, 3, 5, and 7, respectively. 

If the symmetry of the system is reduced from spherical to 
some lower symmetry, the transformation properties of the 
various S-, p-, and f-type AO's are altered. Under the operations 
of the lower symmetry group, all the functions of a particular 
type (e.g., d functions) no longer necessarily transform as a 
single irreducible representation. If, for example, the lower 
symmetry splits the original group of functions into two irre
ducible representations, the functions in either one of these 
taken separately will no longer span an invariant subspace 
under the operations of RT,. Hence, the degree of local rota
tional invariance that was present in the original group of 
functions is no longer retained. The specific changes that occur 
in going from the full rotation group through finite (three-

Journal of the American Chemical Society / 98:26 / December 22, 1976 



8327 

Table I. Transformation Properties of Real Multinomial Functions With Respect to the Full Rotation, Icosahedral, Octahedral, and 
Tetrahedral Symmetry Groups" 

Symmetry 
group 

Irreducible 
represen
tation 

D(O) 
D(D 
D<2> 
DO) 

TA1 

TT1 

rT, 
rG 
F N 

TA1 

TA, 

rE 
TT1 

TT, 
I \ 

rE 
TT 

Dimension of 

irreducible 
represen

tation 

1 
3 
5 
7 

1 
3 
3 
4 
5 
1 
1 
2 
3 
3 
1 
2 
3 

Multinomial transformation properties* 

Full rotation 

(order = °°) 

Icosahedral 
(/) 
(order = 60) 

Octahedral 
(O) 
(order = 24) 

Tetrahedral 
(7") 
(order = 12) 

x, y, z 
xv, xz, vz, x2 — y2, 3z2 — r2 

x(5x2 - Ir2), y(5y2 - 3r2), z(5z2 - 3r2), 
x(z2 - y2),y(z2 - x2), z(x2 + y2), xyz 

1 
(x, y, z), [x(y2 + z2), y(x2 + z2), z(x2 + y2)} 
x3, y}, z3 

x(z2 - y2), y(z2 - x2), z(x2 - y2), xyz 
xy, xz, yz, x2 — y2, 3z2 — r2 

1 
xyz 
x2-y2, iz2-r2 

(x, y, z), (x\ y\ z3), [x(y2 + z2), y(x2 + z2), z(x2 + y2)] 
(xy, xz, yz), [x(z2 - y2), y(z2 - x2), z(x2 - y2)} 
1, xyz 
x2 - y2, 3z2 - r2 

(x, y, z), (xy, xz, yz), (x\ y\ zl), [x(y2 + z2), y(x2 + z2), z(x2 + >>?)], 

[x(z2- y2),y(z2-x2),z(x2-y2)} 

" For a general discussion of the theory of groups, see ref 70. * See ref 67 and 68 for further discussion of the form of real AO's. ' The 
multinomial functions, whose transformation properties are given in the table, are completely equivalent to their corresponding AO 
components (cf. eq 9a-d) under the operations of a given group. 

dimensional) rotational groups of lower order, viz., full (R2) 
— icosahedral (/) — octahedral (O) - • tetrahedral (T), are 
given in Table I. 

The above descent in symmetry illustrates two points that 
are relevant to later discussions: (1) there exist only three finite, 
three-dimensional, rotation groups, (i.e., /, O, and T),13, and 
(2) the icosahedral group represents the highest-order finite 
three-dimensional rotation group. The latter implies that, next 
to the sphere, an icosahedron is the most highly symmetric 
three-dimensional solid that may be constructed.73 

A further consequence of these changes is that a particular 
set of functions, while spanning an invariant subspace under 
the operations of a lower order group, may not possess local 
rotational invariance, which requires spanning an invariant 
subspace under the operations of R^. For example, the di
mension of the invariant subspace spanned by any set of 
functions transforming as the FT irreducible representation 
under the operations of the tetrahedral group (T) is three. If 
the set of functions contained only complete sets of p-type 
AO's, this degree of local rotational invariance can be realized, 
since all three p-type functions (which transform as T j under 
T) also span an invariant three-dimensional subspace under 
R], and thus show rotational invariance to degree three. If, 
however, sets of d- and/or f-type functions (which also trans
form as r-r under T, as shown in Table I) are included in or 
constitute the entire set, rotational invariance is completely 
lost, since three d- and/or f-type AO's are not sufficient to span 
any invariant subspace under R2. The above results can be 
summarized in general by noting that the degree of local ro
tational invariance equals the dimension of the invariant 
subspace spanned by the functions under the operations of Ri, 
and is not determined only by the behavior of the functions 
under the operations of the lower order rotation group. 

By applying arguments analogous to those in the above ex
ample to the other groups in Table I, it is seen that the maxi
mum possible local rotational invariance that can be obtained 
rigorously using functions in any system of symmetry lower 
than a sphere is five. This follows directly from the fact that 

the set of five d-type AOs (see Table I and eq 9c) transform 
as the five-dimensional TH irreducible representation of the 
icosahedBal group (/), and span an invariant subspace of di
mension five under the operations of R3. No other irreducible 
representations of greater dimension are possible in any of the 
finite rotation groups. 

To investigate the local rotational invariance properties of 
FSGO's, it is necessary to relate the properties of the individual 
terms in the FSGO expansion described in the previous section 
(see eq 2-6) to the rotational invariance properties of AO's just 
considered. For example, in the case of a single FSGO located 
on an atomic center, the function is spherically symmetric 
about this local origin, and hence is locally rotationally in
variant to degree one about that point. To exhibit the effect of 
displacement of the FSGO from this origin on local rotational 
invariance, it will be assumed that the FSGO is displaced along 
an arbitrary axis (e.g., the x axis). From eq 6, we have 

G(r) = exp!-(€A2/4)| |G l(r) + CkVxG*(x) 

+ (>/3/8)) t J r
2G*2(r) + t?( f

3)| (11) 

From this expression we see that, if the orbital radius p is suf
ficiently large and the point of expansion is close to the origin 
of the FSGO (i.e., tx is small), and if the region under con
sideration is sufficiently close to the origin of the expansion 
(i.e., r is small), the G(r) will remain approximately locally 
rotationally invariant to degree one. We shall speak of this 
approximation to local rotational invariance in terms of the 
order in «to which local rotational invariance is maintained, 
since it is obtained only under particular conditions in the re
gion close to the point of expansion. However, an examination 
of eq 11 shows that, regardless of the magnitude of tx, local 
rotational invariance of degree greater than one can never be 
obtained rigorously with a single FSGO. Therefore, in the 
above case we speak of local rotational invariance of degree 
one through order e0. 

It is possible to construct particular arrangements of several 
FSGO's that can exhibit a higher degree of local rotational 
invariance, and do so to higher orders in e. In particular, con-
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Table II. Reducible Representations Generated by Specific Spatial Arrangements of FSGO's" 

Symmetry 
group* 

Geometric 
object' 

Number of 
FSGO 

Irreducible representations contained in 
the reducible representation 

T 
O 

I 

Tetrahedron d 

Octahedron 
Cubee 

Cubo-octahedron-^ 
Icosahedron 
Dodecahedron* 
Icosidodecahedronh 

4 
6 
8 

12 
12 
20 
30 

T red = 
Tred = 
Tred = 

Tred = 
Tred = 

TA 

rA 
TA 

rA 
rA 

+ rT 
+ rE 
+ rA 
+ rE 

+ rTl 

+ rTi 
, + rT 
+ TT1 

+ TT2 

+ rT, 
+ 2Tx, 
+ rH 

rred = rA + rT, + rT2 + 2rG + rH 
rred = rA + rT | + rT2 + rG + 3rH 

" The FSGO's are centered at the vertices of the geometric objects listed in the table (see Figure 2). * See ref 70, 71. ' See ref 73 for a complete 
discussion of the properties of these geometric objects. d Note that, by connecting all the nearest-neighbor points located at the center of each 
of the four faces of a tetrahedron generates another tetrahedron, while connecting all nearest-neighbor points located at the midpoints of its 
edges generates an octahedron. e Generated from an octahedron by connecting all nearest-neighbor points located at the center of each of 
the eight faces, f Generated from an octahedron by connecting all nearest-neighbor points located at the midpoint of each of the twelve edges. 
« Generated from an icosahedron by connecting all nearest-neighbor points located at the center of each of the twenty faces. * Generated from 
an icosahedron by connecting all nearest-neighbor points located at the midpoint of each of the thirty edges. 

TETRAHEDRON CCTAHEDRCN 

ICOSAHEDRON 

Figure 2. The position and numbering used to describe FSGO's located 
at the vertices of a regular tetrahedron, octahedron, and icosahedron, re
spectively. The Cartesian coordinates of the vertices ,of the various figures 
are (£, £, £),.(-£, & -£), (£, -£, -£), and (-£, -£, )̂'for the tetrahedron, 
(±£, 0, 0), (0, ±£, 0), and (0, 0, ±£) for the octahedron, and (±£, 0, ±T£), 
(±T£, ±f, 0), and (0, ±r£, ±£) for the icosahedron, where £ is arbitrary, 
and T = (1 + v / 5 ) / 2 . 

sider FSGO's placed at the vertices of the geometric objects 
described in Table II. Each arrangement of FSGO's provides 
a basis for a reducible representation (r r ed) of one of the 
symmetry groups. Using standard group theoretical tech
niques,7071 the irreducible representations contained within 
a particular reducible representation can be determined. Re
sults for a number of different FSGO arrangements are sum
marized in Table II. 

Examination of Table II also shows that not all irreducible 
representations are contained in the various reducible repre
sentations. For example, an FSGO configuration in which the 
individual functions are placed at the vertices of a tetrahedron 
will provide only a basis for TA and Tf, while an FSGO con
figuration in which the individual functions are placed at the 
vertices of an octahedron will provide a basis for TA,, TE, and 
TT, . Of particular interest in this regard is the fact that the 
placement of FSGO's at the vertices of an icosahedron provides 
a basis for the five-dimensional T H irreducible representation 
of / , which is the irreducible representation of greatest di
mension found in any finite rotation group.73 

By taking appropriate linear combinations of a given set of 
FSGO's corresponding to a particular spatial arrangement, 
it is possible to generate the symmetry orbitals,70'71 which 
transform under the operations of the group as the various ir
reducible representations contained in rred- Hence, the set of 
symmetry orbitals belonging to a particular n-dimensional 
irreducible representation span an w-dimensional invariant 
subspace (i.e., transform only among themselves) under the 
operations of that particular group. Stated mathematically (cf. 
eq 10), we have 

|r,.w>}„- |r ,<">>|„ (12) 

where | r,M> represents the ;uth (n = 1, 2 , . . . , n) symmetry 
orbital belonging to T1-, and Jl represents the symmetry op
erations of the particular finite rotation group of interest. The 
explicit form of a number of symmetry orbitals related to dif
ferent spatial FSGO arrangements is given in Table III. The 
numbering and location of FSGO's is given in Figure 2. 

In order to explore the relationship between the arrangement 
of FSGO's and local rotational invariance further, it is nec
essary to examine these symmetry orbitals in greater detail. 
As shown in eq 2-6 and 11, a single off-center FSGO can be 
expanded as a series of multinomials in powers of e. 

In general, a set of FSGO symmetry orbitals corresponding 
to an n-dimensional irreducible representation T, can be 
written in the following form: 

| r ,W> = Nr,
M U°arM + e^r^Kx.y.z) 

+ e2yr,M(x2, y2 , yz) + e25r,
M(x\ yl xyz) 

+ tf(e4)!, M= 1 , 2 , . . . , « (13) 

where Nr1-M is the normalization factor which also contains 
spherically symmetric terms common to all powers of t. The 
l«r,<M)i«. l/3r,(M)!«, i7r,-(M))«, and \bvM\n terms represent 
symmetry-adapted multinomial functions of order 0, 1,2, and 
3, which transform as T,, i.e., 

I«r, (M)| 
" * • ( « ! ' , 

(M)! 

\yr,M\n-^\lrM\n 

{«r>V • { « . 
(M)I 

(14a) 

(14b) 

(14c) 

(14d) 

under the operations Ji of the group (cf. eq 12). The explicit 
form of the symmetry-adapted multinomial functions which 
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Symmetry 
group"* Symmetry orbitals c.d Normalization constants'* 

(T) 

(O) 

U) 

A1) = W A ( G 1 + G 2 + G 3 + G4) 
T- ) = Wx(G1 - G 2 + G 3 - G 4 ) 
TJ-)= W T ( G , + G 2 - G 3 - G 4 ) 
T--> = W T ( G 1 - G 2 - G 3 + G4) 

A1) = W A 1 ( G 1 + G 2 + G 3 + G 4 + G 5 + G6) 
E-2-'2) = W E ( G 1 - G 2 + G 3 - G 4 ) 
El?1-'2) = A"E(2G5 + 2G6 - G1 - G2 - G3 - G4) 
T 1 ^ ) = W T 1 ( G 1 - G 3 ) 
T1-'') = W T 1 ( G 2 - G 4 ) 
T1--) = Wr 1 (G 5 -G 6 ) 

A1) = WA 2,-=1
I2G,-

T1-) = WTJT(G 1 + G 2 - G 5 - G6) + (G9 + G11 - G10 - Gi2)] 
T1-'') = W T 1 I T ( G 3 + G 4 - G 7 - G8) + (G1 + G 5 - G 2 - G6)] 

|T,-'> = W T n [T(G9+ G 1 0 - G 1 , - G12) + (G3 + G7 - G4 - G8)] 
|H- ' ) = W H ( G 1 - G 2 - G 5 + G6) 
IH*--) = W H ( G 9 - G 1 0 - G 1 1 + G 1 2 ) 
IH-'--) = W H ( G 3 - G 4 - G 7 + G8)] 
|Hv2->2) = W'H[T(G, + G2 + G5 + G6) - (T + I)(G3 + G4 + G7 + G8) 

+ (G9 + G 1 0 + G n +G12)] 
|H3--}-'?) = W"H[(1 + 3T)(G, + G2 + G5 + G6) + (G3 + G4 + G7 + G5) 

- ( 2 + 3 T ) ( G 9 + G1 0+ G11 +G12)] 

WA = V2[(l+35 l 2)]- ' /2 

WT, = 1 /2[( l-S1 2)]- ' /2 

WA, = [6(1 + 4 5 1 2 + S1 3)]- ' /2 

WE = [ 4 ( 1 - 25,2 + S, 3 ) ] - ' / 2 

W E = [ 8 ( 1 - 3 5 , 2 + 3 / 2 5 1 3 ) ] - ' / 2 

WT1 = [2(1-S 1 2)] -1/2 

W A = [12(1 + 5512 + 4S17 + S15 + 5i6)]-'/2 

WTl = [4 (T + 1) + 2OTSP - 16TS1 7 - 4TS 1 5 

+ 4(T + 2JS16]-1/2 

W H = [4(1 - S 1 2 - S 1 5 - S 1 6 ) ] -1/2 

W H = [ 8 ( T + I ) ( I 
+ S1 6) ]- ' /2 

W"H = [9(T + %)(1 - V2S12 -
 5/2S17 + S15 

+ S1 6)]- ' /2 

" See ref 70 and 71. * The FSGO are arranged at the vertices of a tetrahedron, octahedron, and icosahedron, respectively (see Figure 2). 
' The superscript designations on the symmetry orbital labels (e.g., |T-)) represent the multinomial function which appears to lowest order 
in «in the expanded form of the symmetry orbital. See Table IV for the detailed expanded forms of the symmetry orbitals. d Only those symmetry 
orbitals which transform as s-, p-, and d-type AO's under the operations of/ are included in the table. The symmetry orbitals belonging to 
the TT, irreducible representation which transform as (*3, y3, z3) under / are not included (cf. Tables I and II). e S„ is the overlap integral: 
S„ = fC-G.tdK Only unique overlap integrals are included in the normalization constants. Related overlap terms can be determined from 
an examination of Figure 2, which also gives the numbering system used to label the FSGO's. 

Table IV. Symmetry Orbital Expansions of Vertex-Centered FSGO Basis Orbitals 

Point group Symmetry orbitals" 

WAexp(-/?2/p2)|4G' •+ (VI/2)e2[G-2 + G>'2 + G-'2] + (e3/2)G-->-- + t?(e4)) 
WTexp(-/?2/p2)(2eG- + e2G>z + (\/l/4)e3[(V"5/3)G-3 + (G-'2 + G--'2>1 + i?(t4)J 
WTexp(-/?2/p2)|2(G> + €2Gx: + (VT/4)e3[(V5/3)G>-3 + (G-2' + G-'-"2'] + i?(c4)) 
WTexp(-/?2/p2)j2fG-- + e2G->' + (V3/4)(:3[(V5/3)G--3 + (G-2-" + G-'2-')] + d(c4)} 

W/4exp(-/?2/p2)|6Gl + (V3/4)e2(G-2 + G^ + G*2) + i?(f
4)| 

> = WEexp(-.R2/p2){(Vl/4)e2(G-2 - Gy1) + d(i4)\ 
•) = WE' exp(-/?2/p2)|(VT/4){

2(2G-'2 - G-2 - G>2) + t?(e4)i 
= WT|exp(-/?2/p2)jeG- + (VT5/24)<;3G-3 + d(e4)\ 
•• WT|exp(-/?2/p2)jeG-' + (vT5/24)63G>'3 + tf(e4)) 
•• WTlexp(-/?2/p2)|eG-- + (VT!/24)f

3Gz3 + d(t4)\ 

WAexp(-/?2/p2)il2G' + ( V 3 / 2 ) ( T + 2)e2(G-2 + G^2 + G-"2) + t?(<:4)) 
•• WTiexp(-/?2/p2)|2e(T + 2)G- + ( V T 5 / 4 ) ( T + l)e3[G-3 + (1/Vl)(G--''2 + G--"2)] + $(i4)\ 
WTlexp(-/?2/p2)(2e(T + 2)G->' + ( V T I / 4 ) ( T + l)e3[G>'3 + (1/Vl)(G-"2 + G-''-"2)] + i?((4)| 
WT|exp(-/?2/p2)(2f(T + 2)G* + ( V T I / 4 ) ( T + l)e3[G23 + (1/VI)(G---2 + G-"'2)] + <?(e4)) 

= WHexp(-/e2/p2)[T(2G-> + t?(e4)) 
= WHexp(-/?2/p2)JTt2G--- + d(e4)\ 
-- WHexp(-^2/p2)JT62G>'-- + t?(«4)j 

2> = WHexp(-/?2/p2)|V3(T + 1) £
2[G-2 -Gy1] + #U4)\ 

2) = W"Hexp(-/?2/p2)|-V3T3€2 [2G'2 - G-2 - G>'2] + ^(^4)| 

Tetrahedral 

Octahedral 

Icosahedral 

A') = 
T-) = 
T-'-> = 
T--> = 

/ * ' > = 
E-2-''2 

E3--2-'-
T1-) = 
T,-') = 
Ti-") = 

A') = 
T1-) = 
Ti-'') = 

T1--) = 
H--') = 
H---> = 
H •••--> = 

H-2-'2 

H3--2-' 

" Normalization constants for the various symmetry orbitals are given in Table III. 

arise from expansions of the symmetry orbitals in Table III can 
be obtained from the data in Table IV. 

To assess the degree of local rotational invariance to a given 
order in e, it is necessary to evaluate the transformation 
properties of the symmetry-adapted multinomial functions 
under the operations of R3. This is exactly analogous to eval
uating which of eq 14a, 14b, 14c, and/or 14d are satisfied, if 
Ji is now interpreted to represent the operations of R3. The 
highest power in e to which these equations are satisfied then 

represents the order in t to which local rotational invariance 
is attained. 

IV. Local Rotational Invariance of Off-Center Gaussian 
Basis Sets. Examples 

As a specific example of the above procedure, consider the 
case of FSGO's positioned at the four vertices of a tetrahedron 
(cf. Figure 1). From eq 6, each FSGO can be seen to have the 
form 
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G1 (r) = expj-(3e2/4)}G°(r){l + (t/p)[x + y + z] 
+ (e/p)2[x2 4- y2 + z2 + 2xy + 2xz + 2yz]/2 
+ (e/p)3[x3 + y3 + z3 + 3xy2 + 3xz2 + 3x2y 

+ Ix2Z + 3yz2 + 3y2z + 6xyz]/6 + d(e4)\ (15a) 

G2(r) = exp|-(3 t
2/4)}G°(r)!l + WP)[-X + y - z] 

+ (e/p)2[x2+y2 + z2- 2xy + 2xz - 2yz]/2 
+ ( e /p ) 3 [ -x 3 + y* - z 3 - 3xy2 - 3xz2 + 3x2y 

- 3x2z + 3yz2 - 3><2z + 6xyz}/6 + d(t4)} (15b) 

G3(r) = exp|-(3e2/4))G°(r)(l + (t/p)[x - y - z] 
+ (e/p)2[x2 + y2 + z2- 2xy - 2xz + 2yz]/2 

+ («/p)3[x3 - yi - z3 + 3x.y2 + 3xz2 - 3x2y 

- 3x2z - 3yz2 - 3y2z + 6xyz]/6 + tf(«4)! (15c) 

G4(r) = exp|-(3«2 /4) |G°(r) | l + (e/p)[-x - y + z] 

+ (e/p)2[x2 + y2 + z2 + 2xy - 2xz - 2yz}/2 

+ (e/p)i[-xi-yi + z 3 - 3xy2~3xz2- 3x2y 

+ 3x2z - 3yz2 + 3y2z + 6xyz]/6 + d(e4)} (15d) 

Since the absolute magnitude of the X, Y, and Z coordinates 
of the vertices of the tetrahedron are equal (see Figure 2), it 
follows that e is given by 

e = 2 | * | / p = 2 | r | / p = 2 |Z) /p . (16) 

R2 = X2 + Y2 + Z2 for all vertices, and the orbital radii of all 
FSGO must be equal if tetrahedral symmetry is to be main
tained. 

If the above FSGO expansions are then taken in combina
tions corresponding to specific symmetry orbitals (cf. Table 
III), the following functions result:74-75 

I A1) = iVAexpj-(3e2/4)i(4(7 l(r) + (v^/2)<2[G>2(r) 
+ G>\r) + Gz2(r)] + (1Z2)(

3G^(T) + $(t4)} (17a) 

|TV> = yVT exp{-(3e2/4)j|2eG*(r) + e 2 G^(r) 
+ (V^/4)e 3 [ (v^ /3)G* 3 ( r ) + (G^(T) 

+ G-'2(r))] + t>(<4)} (17b) 

|T>) = A r
Texpj-(3e2 /4) | j2eG'(r) + e2G*-"(r) 
+ (v /3/4)63[(v /5/3)G-'3(r) + (G»2>(r) 

+ G>'--2(r))] + t?(e4)j (17c) 

and 

|T-"> = /VTexp|-(3e
2/4)||26G--(r) + e 2 G^( r ) 

+ (vT/4) £
3 [ (v / 5/3)G- ' ' ( r ) + (G*2:{r) 

+ G>'2-'(r))] + t?(e4)| (17d) 

where A'A and Ny are given in Table III. 
The degree of local rotational invariance can now be assessed 

in orders of e. For example, | A1) transforms as T\ under T. 
Thus, the maximum degree of local rotational invariance that 
is possible is one. In addition, examination of the terms in eq 
17a reveals that local rotational invariance of degree one is 
maintained through order c2, since both the terms of order e0 

and e2 represent spherically symmetric s-type functions. The 
f-type function is the leading term in the loss of local rotational 
invariance. Hence, if the value of t is such that this f component 
is large, then the calculated energy or other property may de
pend significantly upon the particular orientation that is chosen 
for the tetrahedron of FSGO's about the origin. 

For the case of the three 1\ orbitals it is seen that, through 
order e, these orbitals are locally rotationally invariant to de
gree three. The leading terms in the nonrotationally invariant 
components of these orbitals appear at order e2 and consist of 
d-type functions. This nonrotational invariance arises since 
only three of the five components necessary for full local ro

tational invariance of degree five are present. Thus, we have 
local rotational invariance of degree three through order e1. 

In considering local rotational invariance of basis sets that 
employ off-center FSGO's, it is also of interest to consider basis 
sets constructed using the lobe-function technique.37"38 In this 
approach, atomic orbitals having different angular dependence 
are created using linear combinations of FSGO's. However, 
complete local rotational invariance is not possible in this ap
proach either. 

For example, a pz-type orbital that is represented using lobe 
functions can be written as37-38 '76 

I P z ) = W ( G 1 - G 2 ) (18) 

where N is a normalization constant, and 

G1 = ( 2 / 7 r p 2 ) 3 / 4 e x p H * 2 + > ' 2 + ( z - Z ) 2 ] / p 2 ! (19a) 

G2 = ( 2 / T T P 2 ) 3 ' 4 expj-[x 2 4- y2 + (z + Z)2]/p2\ (19b) 

Using eqs 6 and 19, the p r-type orbital can be written as: 

|pz> = N exp\-iz
2/4\[(zG

z + (VT5/24)6 ;
3G--' + i?(e4)] 

(20) 

Thus, if an isotropic set of p.v-, p^.-, and p r-type orbitals are 
used, local rotational invariance of degree three through order 
e2 is achieved, and nonrotationally invariant components are 
of the f-type and higher. While proper choice of e can be used 
to minimize the nonrotational invariance,77 full rotational 
invariance of degree three can be achieved only in the limit of 
Z - O . 

While the degree of local rotational invariance can be as
sessed rigorously for all cases using the concepts just described, 
it is important to note that numerical considerations also can 
affect the order in « of local rotational invariance that can be 
obtained. In particular, if e is chosen to be small enough, then 
the contribution of the nonrotationally invariant components 
may be numerically negligible relative to the rotationally in
variant terms. In this way, approximate local rotational in
variance can be obtained to higher orders in «than would be 
expected from the strictly rigorous analysis. 

To illustrate these points qualitatively with a practical ex
ample, the initial molecular fragment FSGO basis set for CH4 
is of interest.16 For this case, five FSGO are employed, one on 
the carbon nucleus, and one along each of the C-H bonds. 
Based upon the optimized FSGO parameters,16 the value of 
e for the various orbitals is eis = O and ecu = 1.4754. Using eq 
17a, this means that the ratio of the leading nonrotationally 
invariant component to the preceding (rotationally invariant) 
term is 

( ecH 3 / 2 ) / [ (v^ /2 )«cn 2 ]= 0.8518 

For the case of the Tj orbitals, the corresponding ratio is 

€CH2/2eCH = 0.7377. 

It should be noted that this example represents an extreme 
case for several reasons. In particular, the C-H functions are 
intended to be "bond functions" and, thus, the choice of ori
entation of these functions about the carbon atom is defined 
clearly by the CH4 molecule itself, and the question of other 
possible orientations for these basis functions does not arise. 
Also, for most other larger basis sets, the tetrahedrally ar
ranged FSGO would be used as polarization functions in the 
vicinity of the carbon atom, where values of e that would be 
encountered would be considerably smaller.78 

More generally, the degree of local rotational invariance, 
to a given order in t, achieved for several important FSGO 
configurations is summarized in Table IV. Several points of 
interest and importance are illustrated in this table, both of 
conceptual and computational interest. 
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For example, while the maximum degree to which local 
rotational invariance can be achieved is five, care must be ex
ercised in the choice of symmetry orbitals if the maximum 
rotational invariance is to be achieved. In particular, use of 12 
edge-centered FSGO in an octahedral arrangement (i.e., a 
cubo-octahedral arrangement) gives rise to a reducible rep
resentation having TE and Tj2 components (see Table II). 
However, the dimension of these irreducible representations 
is two and three, respectively, which implies that the maximum 
degree of local rotational invariance for the TE symmetry or
bitals that is possible is two, and three for the Tj2 symmetry 
orbitals. Hence while all d-type components are present in these 
two irreducible representations (see Table I), they cannot 
rigorously span a five-dimensional subspace, which would be 
required for local rotational invariance of degree five. On the 
other hand, use of the same number of FSGO's at the vertices 
of an icosahedron does provide local rotational invariance of 
degree five due to the presence of the TH irreducible repre
sentation. 

The above comments also imply that a full, isotropic set of 
f-type orbitals that are locally rotationally invariant to degree 
seven cannot be constructed rigorously using off-centered 
FSGO basis sets. Of course, just as approximate rotational 
invariance to higher order in t than predicted rigorously can 
be approximately achieved by suitable choice of e, construction 
of a set of seven f-type orbitals that closely approximate a set 
that is locally rotationally invariant to degree seven can be 
achieved through appropriate choices of «, and a reducible 
representation that contains TQ and TH- Examples of such a 
possibility arise with the use of either face- or edge-centered 
FSGO in the icosahedral point group. 

V. Generalization and Extension of Gaussian Basis Sets. 
Computational and Other Considerations 

Within the framework of the previous analysis, it can be seen 
that a new method for devising and extending Gaussian basis 
sets can be readily achieved. This procedure allows exploitation 
of the favorable computational characteristics of FSGO's, 
while maintaining the ability to carry out basis set extension 
in a systematic manner. 

For representation of s-type functions, the considerations 
are no different than those used "traditionally", i.e., successive 
addition of FSGO's on the nuclei with exponent optimization 
(with or without contractions) can be used to obtain the desired 
accuracy. For representation of p-type functions, substantial 
savings without loss of generality can be achieved using the 
preceding analysis. In particular, for every set of p-type AO's 
(p.v, Px, p.-) added, an appropriate set of four FSGO's arranged 
tetrahedrally about the nucleus may be used. As indicated 
previously, such a set contains all possible p components plus 
an s component, thus allowing for any desired hybridization 
of s- and p-type AO's. This can be considered to be analogous 
to adding a "shell" of 2s and 2p orbitals. 

Next, for every set of d-type AO's desired, a set of 12 FSGO 
placed at the vertices of an icosahedron can be employed. 
Similar to the p-type AO case, each set of 12 FSGO contains 
all s, p, and d components, thus being analogous to adding a 
"shell" of 3s, 3p, and 3d orbitals. 

Such choices provide substantial computational advantages. 
In particular, the computational complexities of evaluating 
electron repulsion integrals when Cartesian p- and d-type 
GTO's are used is not encountered, since only s-type FSGO's 
are used at all levels of generalization. Second, the number of 
FSGO (if chosen in the manner just described) is fewer than 
needed if p- and d-type AO's are represented by lobe functions. 
In particular, six FSGO are needed to represent a full set of 
(px, Py, p:) orbitals in the lobe-function approach, while only 
four FSGO are needed to provide the same components if ar

ranged tetrahedrally. For the case of d functions, at least 18 
FSGO are needed to represent a full set of five d-type orbitals 
using the lobe-function approach, while only 12 FSGO are 
needed to describe the same components if the FSGO are 
placed at the corners of an icosahedron. 

To illustrate the savings in number of integrals that need to 
be evaluated, consider the CH4 molecule. If, for example, a (9s, 
5p, Id) lobe-function basis is used on carbon and a (6s, Ip) 
lobe-function basis used on each hydrogen nucleus, then a total 
of 105 FSGO would be employed, which gives rise to a total 
of 15 487 395 electron repulsion integrals over FSGO to be 
evaluated (ignoring integrals that may be numerically ap
proximately zero). On the other hand, if the procedure just 
described is used, a total of only 81 FSGO is needed, which 
gives rise to a total of 5 516 181 electron repulsion integrals 
over FSGO to be evaluated. Thus, elimination of 9 971 214 
integrals is possible (a reduction of 68%) without loss of any 
of the s, p, or d components. Indeed, the four tetrahedrally-
arranged FSGO give rise to an s component in addition to the 
three p-components, and the 12 icosahedrally-arranged FSGO 
provide an s, three p, and several f components, as well as the 
five d components. Hence, this basis can be considered to be 
richer in s and p components than the lobe-function basis, even 
though fewer FSGO's are used. Finally, since the integral 
evaluation step is usually the rate-determining step in SCF 
calculations using basis sets of this size, such substantial re
duction in electron repulsion integrals to be evaluated can have 
important cost and feasibility implications. 

There are, however, several potential difficulties with the 
approach just described that should be noted. First, as pointed 
out earlier, the maximum degree of rotational invariance that 
can be attained rigorously is five, which implies that full iso
tropic sets of f and higher orbitals can be constructed only 
approximately. Next, a set of tetrahedrally-arranged FSGO, 
while providing a full complement of p components, has d-
orbital (and higher) components which are nonrotationally 
invariant. Thus, if both tetrahedrally- and icosahedrally-ar
ranged FSGO's are used, rigorous local rotational invariance 
to degree five is not attained. For proper choices of e, however, 
the nonrotationally invariant d-orbital components arising 
from the tetrahedrally-arranged FSGO's can be made 
small. 

Considerable numerical exploration of these notions is 
clearly desirable to quantify the concepts and alternatives 
described above. Such studies are currently underway, and will 
be reported later. 

Acknowledgment. The authors would like to acknowledge 
helpful conversations with and comments of G. G. Hall, D. 
Spangler, C. Chabalowki, and B. V. Cheney during the course 
of this work. 

References and Notes 

(1) (a) Supported in part by grants from the Upjohn Company of Kalamazoo, 
Michigan, and the United States Energy Research and Development Ad
ministration. Partial support of the computing time required for this work 
by the University of Kansas is also gratefully acknowledged, (b) Department 
of Biochemistry; (c) Department of Chemistry. 

(2) A. A. Frost, J. Chem. Phys., 47, 3707, 3714 (1967); J. Am. Chem. Soc, 
89,3064(1967). 

(3) H. Preuss, Z. Naturforsch., 11, 823 (1956). 
(4) G. G. Hall, Proc. R. Soc. London, Ser. A, 205 541 (1951); C. C. J. Roothaan, 

Rev. Mod. Phys., 23, 69 (1951). 
(5) R. E. Christoffersen and G. M. Maggiora, Chem. Phys. Lett., 3, 419 

(1969). 
(6) R. E. Christoffersen, D. W. Genson, and G. M. Maggiora, J. Chem. Phys., 

54, 239(1971). 
(7) G. M. Maggiora, R. E. Christoffersen, D. W. Genson, and B. V. Cheney, 

Theor. Chim. Acta, 22, 337 (1971). 
(8) R. E. Christoffersen, L. L. Shipman, and G. M. Maggiora, Int. J. Quantum 

Chem., Symp., 5, 143(1971). 
(9) B. V. Cheney and R. E. Christoffersen, J. Chem. Phys., 56, 3503 

(1972). 

Maggiora, Christoffersen / Generalization and Characteristics of FSGO Basis Sets 



8332 

(10) D. W. Genson and R. E. Christoffersen, J. Am. Chem. Soc, 94, 6904 
(1972). 

(11) L. L. Shipman and R. E. Christoffersen, Chem. Phys. Lett., 15, 469 
(1972). 

(12) R. E. Christoffersen, Adv. Quantum Chem., 6 333 (1972). 
(13) R. E. Christoffersen in "Energy, Structure, and Reactivity", D. W. Smith 

and W. B. McRae, Ed., Wiley, New York, N.Y., 1973, p 357. 
(14) B. V. Cheney, Chem. Phys. Lett., 18, 2757 (1973). 
(15) T. D. Davis, R. D. Christoffersen, and G. M. Maggiora, Chem. Phys. Lett., 

21,576(1973). 
(16) R. E. Christoffersen, D. Spangler, G. M. Maggiora, and G. G. Hall, J. Am. 

Chem. Soc, 95, 8526 (1973). 
(17) R. E. Christoffersen and L. E. Nitzsche, Proceedings, International Con

ference on Computers in Chemical Research and Education, Ljubljana, 
Yugoslavia, 2, 4/249(1973). 

(18) L. E. Nitzsche and R. E. Christoffersen, J. Am. Chem. Soc, 96, 5989 
(1974). 

(19) R. E. Christoffersen, J. Am. Chem. Soc, 93, 4104 (1971). 
(20) L. L. Shipman and R. E. Christoffersen, Proc. Natl. Acad. Sci. U.S.A., 69, 

3301 (1972). 
(21) D. W. Genson and R. E. Christoffersen, J. Am. Chem. Soc, 95, 362 

(1973). 
(22) L. L. Shipman and R. E. Christoffersen, J. Am. Chem. Soc, 95, 1408, 4533 

(1973). 
(23) L. J. Weimann and R. E. Christoffersen, J. Am. Chem. Soc, 95, 2074 

(1973). 
(24) L. L. Shipman and R. E. Christoffersen, Theor. Chim. Acta, 31, 75 

(1973). 
(25) R. E. Christoffersen, int. J. Quantum Chem., Symp., 7, 169 (1973). 
(26) L. L. Shipman, R. E. Christoffersen, and B. V. Cheney, J. Med. Chem., 17, 

583(1974). 
(27) B. V. Cheney, J. Med. Chem., 17, 591 (1974). 
(28) J. A. Ryan, F. Hovis, D. Spangler, J. Hylton, and R. E. Christoffersen in 

"Molecular and Quantum Pharmacology", B. Pullman and E. Bergmann, 
Ed., D. Reidel Publishing Co., Dodrecht, Netherlands, 1974, p 319. 

(29) T. D. Davis, G. M. Maggiora, and R. E. Christoffersen, J. Am. Chem. Soc, 
96, 7878(1974). 

(30) T. D. Davis, R. E. Christoffersen, and G. M. Maggiora, J. Am. Chem. Soc, 
97, 1347(1975). 

(31) G. Grunewald, I. Uwayda, R. E. Christoffersen, and D. Spangler, Tetrahedron 
Lett., 11,933(1975). 

(32) D. Spangler, R. McKinney, G. M. Maggiora, L. L. Shipman, and R. E. 
Christoffersen, Chem. Phys. Lett., 36, 427 (1975). 

(33) L. E. Nitzsche, C. Chabalowski, and R. E. Christoffersen, J. Am. Chem. Soc, 
98,4794(1976). 

(34) R. E. Christoffersen in "Quantum Mechanics of Molecular Conformations", 
B. Pullman, Ed., Wiley, New York, N.Y., 1976, p 194. 

(35) R. M. Archibald, D. R. Armstrong, and P. G. Perkins, J. Chem. Soc, Faraday 
Trans. 2, 70, 1557(1974). 

(36) B. Ford, G. G. Hall, and J. C. Packer, Int. J. Quantum Chem., 4, 533 
(1970). 

(37) J. L. Whitten, J. Chem. Phys., 39, 349 (1963); 44, 359 (1966); J. D. Petke, 
J. L. Whitten, and A. W. Douglas, J. Chem. Phys., 51, 256 (1969). 

(38) J. D. Petke and J. L. Whitten, J. Chem. Phys., 59, 4855 (1973). 
(39) G. G. Hall, Int. J. Quantum Chem., 7, 15 (1973). 
(40) K. M. Karunakaran and R. E. Christoffersen, J. Chem. Phys., 62, 1992 

(1975). 
(41) D. F. Brailsford, G. G. Hall, N. Hemming, and D. Martin, Chem. Phys. Lett., 

35, 437 (1975). 
(42) H. Preuss, Int. J. Quantum Chem., 2, 651 (1968). 
(43) P. H. Blustin and J. W. Linnett, J. Chem. Soc, Faraday Trans. 2, 70, 274, 

327(1974). 
(44) A. D. Tait and M. Dixon, MoI. Phys., 29, 1353 (1975). 
(45) L. M. Haines, J. N. Murrell, B. J. Ralston, and D. J. Woodnutt, J. Chem. Soc, 

Faraday Trans. 2, 70, 1794 (1974). 

(46) M. Zaucer and A. Azman, Croat, Chem. Acta, 47, 17 (1975). 
(47) P. H. Blustin and J. W. Linnett, J. Chem. Soc, Faraday Trans. 2, 71, 1058, 

1071 (1975). 
(48) P. A. Suthers and J. W. Linnett, Chem. Phys. Lett., 29, 589 (1974). 
(49) M. Afzal and J. Ahmad, Pak. J. Sci. Ind. Res., 17, 113 (1975). 
(50) P. H. Blustin, Chem. Phys. Lett., 35, 1 (1975). 
(51) B. Ford and G. G. Hall, Comput. Phys. Commun., 8, 337 (1974). 
(52) A. T. Amos and J. A. Yoffe, Chem. Phys. Lett., 31, 57 (1975). 
(53) A. T. Amos, R. J. Crispin, and R. A. Smith, Theor. Chim. Acta, 39, 7 

(1975). 
(54) A. A. Frost and J. A. Rouse, J. Am. Chem. Soc, 90, 1965 (1968). 
(55) J. L. Nelson and A. A. Frost, Theor. Chim. Acta, 29, 75 (1973). 
(56) G. G. Hall, C. J. Miller, and C. W. Schnuelle, J. Theor. Biol., 53, 475 

(1975). 
(57) G. G. Hall, Chem. Phys. Lett., 6, 501 (1973). 
(58) A. Tait and G. G. Hall, Theor. Chim. Acta, 31,311 (1973). 
(59) J. C. Packer and D. F. Brailsford, Comput. Phys. Commun., 5, 136 

(1973). 
(60) D. F. Brailsford and J. A. Prentice, Comput. Phys. Commun., 5, 136 

(1973). 
(61) D. F. Brailsford, in "Quantum Chemistry: The State of the Art", N. R. 

Saunders and J. Brown, Ed., Science Research Council, London, 1975, 
p 163. 

(62) L. C. Snyder and H. Basch, "Molecular Wave Functions and Properties", 
Wiley, New York, N.Y., 1972. 

(63) See ref 2 for a detailed discussion of orbital radius. 
(64) See, for example, S. Huzinaga, J. Chem. Phys., 42, 1293 (1965); E. 

Clementi and D. R. Davis, J. Comput. Phys., 1, 223 (1966); R. Ditchfield, 
W. J. Hehre, and J. A. Pople, J. Chem. Phys, 54, 724 (1971); S. F. Boys, 
Proc. R. Soc. London, Ser. A, 200, 542 (1950). 

(65) I. S. Sokolnikoff and R. M. Redheffer, "Mathematics of Physics and Modern 
Engineering", McGraw-Hill, New York, N.Y., 1958. 

(66) F. W. Byron and R. W. Fuller, "Mathematics of Classical and Quantum 
Physics", Vol. I, Addison-Wesley, Reading, Mass., 1969, pp 217-224. 

(67) See, for example, H. Eyring, J. Walter, and G. E. Kimball, "Quantum 
Chemistry", Wiley, New York, N.Y., 1944. 

(68) See H. G. Friedman, Jr., G. R. Chappin, and D. G. Feuerbacher, J. Chem. 
Educ, 41, 354 (1964) for a discussion of f-type AO's. 

(69) See, for example, M. Tinkham, "Group Theory and Quantum Mechanics", 
McGraw-Hill, New York, N.Y., 1964, Chapter 5. 

(70) R. McWeeny, "Symmetry: An Introduction to Group Theory", Macmillan, 
New York, N.Y., 1963. 

(71) L. M. Falicov, "Group Theory and Its Physical Applications", University of 
Chicago Press, Chicago, III., 1966. 

(72) This definition of rotational invariance is also consistent with, and can be 
thought of as a manifestation of the generalized Unsold theorem. See J. 
C. Slater, "Quantum Theory of Atomic Structure", Vol. I, McGraw-Hill New 
York, N.Y., 1960, p 182. 

(73) H. M. S. Coxeter, "Regular Polytopes", 3d ed, Dover Publications, New 
York, N.Y., 1973. 

(74) It should be noted that the above type of analysis can be applied to any type 
of FSGO arrangement regardless of its symmetry. Arrangements of sym
metry lower than those considered are usually of lesser interest, however, 
due to the lower degree of local rotational invariance usually achieved. 

(75) The two terms G*H,r) and GX!'(r) are grouped together by parentheses 
in eq 17b-d in order to indicate that it is the sum of these terms (not the 
individual terms) which possesses the specified transformation proper
ties. 

(76) It is of interest to note that the particular form of the functions chosen in 
the lobe-function approach is identical with what would be obtained in the 
current approach using octahedral symmetry. 

(77) Compare the discussion in ref 37. 
(78) In expanded FSGO basis set studies on CH4 (to be published), values of 

t ~ 0.10 have typically been found for FSGO's placed in the vicinity of the 
carbon atom for polarization purposes. 

Journal of the American Chemical Society / 98:26 / December 22, 1976 


